Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The accurate ab-initio simulation of molecules and periodic solids with diagrammatic perturbation theory is an important task in quantum chemistry, condensed matter physics, and materials science. In this article, we present the WeakCoupling module of the open-source software package Green, which implements fully self-consistent diagrammatic weak coupling simulations, capable of dealing with real materials in the finite-temperature formalism. The code is licensed under the permissive MIT license. We provide self-consistent GW (scGW) and self-consistent second-order Green's function perturbation theory (GF2) solvers, analysis tools, and post-processing methods. This paper summarizes the theoretical methods implemented and provides background, tutorials and practical instructions for running simulations.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Accurate modeling of the response of molecular systems to an external electromagnetic field is challenging on classical computers, especially in the regime of strong electronic correlation. In this article, we develop a quantum linear response (qLR) theory to calculate molecular response properties on near-term quantum computers. Inspired by the recently developed variants of the quantum counterpart of equation of motion (qEOM) theory, the qLR formalism employs “killer condition” satisfying excitation operator manifolds that offer a number of theoretical advantages along with reduced quantum resource requirements. We also used the qEOM framework in this work to calculate the state-specific response properties. Further, through noiseless quantum simulations, we show that response properties calculated using the qLR approach are more accurate than the ones obtained from the classical coupled-cluster-based linear response models due to the improved quality of the ground-state wave function obtained using the ADAPT-VQE algorithm.more » « less
-
In a recent paper (JCTC, 16, 6098 (2020)), we introduced a new approach for accurately approximating full CI ground states in large electronic active-spaces, called Tensor Product Selected CI (TPSCI). In TPSCI, a large orbital active space is first partitioned into disjoint sets (clusters) for which the exact local many-body eigenstates are obtained. Tensor products of these locally correlated many-body states are taken as the basis for the full, global Hilbert space. By folding correlation into the basis states themselves, the low-energy eigenstates become increasingly sparse, creating a more compact selected CI expansion. While we demonstrated that this approach can improve accuracy for a variety of systems, there is even greater potential for applications to excited states, particularly those which have some excitonic character. In this paper, we report on the accuracy of TPSCI for excited states, including a far more efficient implementation in the Julia programming language. In traditional SCI methods that use a Slater determinant basis, accurate excitation energies are obtained only after a linear extrapolation and at a large computational cost. We find that TPSCI with perturbative corrections provides accurate excitation energies for several excited states of various polycyclic aromatic hydrocarbons (PAH) with respect to the extrapolated result (i.e. near exact result). Further, we use TPSCI to report highly accurate estimates of the lowest 31 eigenstates for a tetracene tetramer system with an active space of 40 electrons in 40 orbitals, giving direct access to the initial bright states and the resulting 18 biexcitonic states.more » « less
An official website of the United States government

Full Text Available